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FDA STUDY FINDINGS 

PRIMARY BIOCHEMICAL MECHANISM OF LOW-LEVEL-LASER THERAPY FOR 

THE NON-INVASIVE REDUCTION OF SUBCUTANEOUS ADIPOSE TISSUE. 

 

Introduction: 

Several published studies have revealed a unique biological effect in adipocytes following low-

level laser stimulation.  Dr. Rodrigo Neira and coworkers (2000) were able to demonstrate that 

low-level laser light at 635nm emulsified isolated adipose panicles.1,2 Scanning and transmission 

electron microscopy (SEM and TEM) revealed the collapse of fat-filled adipocytes in panicle 

arrangements following 6 minutes of laser irradiation (Figure 1). 1, 2  

 

Dr. Niera identified the formation of an aperture or transitory pore within the membrane of 

adipocytes following LLLT, and showed the movement of stored adipocyte contents across the 

membrane and into the extracellular space (figure 2). 3  
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Dr. Niera concluded that adipocyte collapse was the result of the disrupted adipocyte membrane 

induced by laser irradiation.1-3  Work published by Dr. Solarte (2002) studied the visible light 

transmission spectra for different dissolution concentrations of adipocytes and observed changes 

in the optical transmittance of irradiated samples, and confirmed that morphological changes of 

adipocytes were the result of laser therapy. 4 

 

Dr. Jackson and co-workers (2004) applied low-level laser therapy as an adjuvant instrument for 

liposuction, externally administering laser irradiation several minutes prior to the aspiration 

phase.5-7  Jackson and colleagues noted that for those patients receiving LLLT a greater volume 

of fat was able to be extracted and reduction in edema and pain was observed.5-7  

 

Several studies have been published highlighting laser therapy as an adjunctive tool in 

liposuction; although, a placebo-controlled, randomized, double-blind clinical investigation 

revealed that low-level laser irradiation could serve as an independent, non-invasive instrument 

for the reduction of subcutaneous fat tissue.   

 

The question that immediately arises is, “How can light, when externally applied, be capable of 

inducing such a phenomenal effect at the cellular level?”  According to quantum theory, light 

radiation energy is absorbed as discrete units called photons, and at the molecular level, it is this 

photon-induced chemistry that ultimately gives rise to the observable effect at the biological 

level.8   The first law of photochemistry states that the observable biological effects subsequent 

to LLLT can only transpire in the presence of a photoacceptor molecule, a molecule capable of 

absorbing the photonic energy being emitted.8  A molecule capable of photonic absorption 

usually contains a light absorbing center referred to as a chromophore.  Light absorbing centers 

often house transition metals, elements that are readily identified by their incomplete d subshell.9 

Based on physicist Niel-Bohrs model; subshells of an atom identify the possible quantum states 

in which an individual electron can reside depending on its energy level. 9 Electrons are capable 

of undergoing quantum leaps, where an electron transitions between quantum states, shifting 

from one energy level to another following the absorption or emission of a photon. 9 The shift 

from a lower energy state to a higher state is referred to as the excitation of an electron, the 

change from an occupied orbital to a given unoccupied orbital.   Regarding transition elements, 
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such as copper (Cu) or iron (Fe), these elements are more susceptible to an electron shift because 

of their unique electron configuration.  The photoacceptor molecules responsible for the 

photobiological effects subsequent to laser irradiation contain transition metals.  The photon 

absorption is followed by a rapid vibrational relaxation which causes the molecule to reach an 

equilibrium geometric configuration corresponding to its electronic excited state.8 This change 

may modulate the biological behavior of photo-absorbing molecules.   

 

Studies have revealed that cytochrome c oxidase serves as a photoacceptor molecule.  

Cytochrome c oxidase is a multi-component membrane protein that contains a binuclear copper 

center (CuA) along with a heme binuclear center (a3-CuB) both which facilitate the transfer of 

electrons from water soluble cytochrome c oxidase to oxygen. 10-13  Cytochrome c oxidase is a 

terminal enzyme of the electron transport chain and plays a vital role in the bioenergetics of a 

cell.  Studies indicate that following laser irradiation at 633nm, the mitochondrial membrane 

potential and proton gradient increases, causing changes in mitochondria optical properties 

increasing the rate of ADP/ATP exchange. 14 It is suggested that laser irradiation increases the 

rate at which cytochrome c oxidase transfers electrons from cytochrome c to dioxygen. 15,16  

Moreover, it has been proposed that laser irradiation reduces (gain of electrons) the catalytic 

center of cytochrome c oxidase, making more electrons available for the reduction of dioxygen. 
17, 18 The photo-activation of terminal enzymes, like cytochrome c oxidase, play a vital role in the 

activation of the diverse biological cascade observed subsequent to laser irradiation.   

 

The peak absorption of cytochrome c oxidase is found in the red to near-infrared spectrum. 19-21 

Therefore, optimal biological stimulation can be achieved utilizing a device that emits light 

within the red spectrum. Furthermore, to ensure proper depth penetration and deep tissue 

stimulation, the use of a coherent laser source is absolutely vital.  22-24 Biologically speaking, the 

difference between a light emitting diode (LED) and laser diode are negligible at extremely 

superficial surfaces; however, when attempting to target deep tissue such as subcutaneous 

adipocytes, it is essential that a coherent laser source is administered. 22-25 

 

The initial physical and/or chemical changes of cytochrome c oxidase have been shown to alter 

the intracellular redox state. 26  It has been proposed that the redox state of a cell regulates 
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cellular signaling pathways that control gene expression.27-29 Modulation of the cellular redox 

state can activate or inhibit signaling pathways such as redox-sensitive transcription factors 

and/or phospholipase A2.
30-33  Two well defined transcription factors, nuclear factor Kappa B 

(NF-κB) and activator protein-1 (AP-1), are regulated by the intracellular redox state; moreover, 

NF-κB and AP-1 become activated following an intracellular redox shift to a more alkalized 

state.32,33  Subsequent to laser irradiation, a gradual shift towards a more oxidized (alkalized) 

state has been observed; more importantly, the activation of redox-sensitive transcription factors 

and subsequent gene expression has been demonstrated 27,34,35   

 

Based on its ability to modulate cellular metabolism and alter the transcription factors 

responsible for gene expression, low-level laser therapy (LLLT) has been found to alter gene 

expression, 36 cellular proliferation, 37-41 intra-cellular pH balance, 42 mitochondrial membrane 

potential, 43 generation of transient reactive oxygen species 44-47 and calcium ion level, 44, 48, 49 

proton gradient 50 and consumption of oxygen 51. Moreover, the proliferation of keratinocytes 

and fibroblasts has been reported in the literature for extremely low doses of laser irradiation. 52, 

53 

 

The modulation of transcription factors has become a common therapeutic strategy to prevent or 

provoke the expression of specific genes, and the approach could potentially provide a means to 

treat a wide assortment of medical disorders.  Jackson and coworkers (2002) identified more than 

twenty transcription factors are regulated by the intracellular redox state.  54   It is proposed that 

laser therapy, because it has been identified to alter the intracellular redox state, could affect the 

function of transcription factors associated with the formation and maintenance of adipocyte 

membranes.  To support this claim, further studies are highly warranted.  However, there is 

enough evidence to support that laser irradiation within the red spectrum does play a unique role 

in the expression of specific genes, and is plausible that the transitory pore observed following 

LLLT could result from the alteration in gene expression.   

 

As discussed earlier, laser therapy activates the electron flow in the respiratory chain resulting in 

a greater production of ATP.  In mitochondrial electron transport the superoxide radical is 

produced.  Superoxides can stimulate or inhibit cell proliferation. 55 Dmitriev and coworkers 
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(1990) discussed that mitochondrial ATP synthesis can be inhibited and activated by the 

generation of superoxides subsequent to light radiation. 56  An increase in the production of 

superoxides results in an increase in calcium levels, release of arachidonic acid, activation of 

sodium and hydrogen antiport and calcium-ATPase, and alteration of sodium and calcium 

exchange. 57-59  A process known as lipid peroxidation is the degradation of lipids via 

superoxides.  Lipids found in the membranes of cells are broken down due to the highly reactive 

nature of superoxides.  Olban and coworkers (1998) demonstrated that laser irradiation between 

1-5J stimulated lipid peroxidation and superoxide production (figure 1). 60   

 

Fig 1: Disruption of the bilipid membrane induced by superoxides 

 

It is proposed that the up-regulation in superoxides may result in the degradation of lipids in the 

membranes of adipocytes; therefore resulting in the temporary formation of the transitory pore.   

 

Laser therapy provides the medical community with an alternative therapeutic regime for the 

reduction of subcutaneous tissue volume.  Although the biochemical mechanism is not yet fully 

understood, histological studies clearly and effectively identify the formation of the transitory 

pore and subsequent cell collapse immediately following laser irradiation.  More importantly, the 

placebo-controlled, randomized, double-blind clinical investigation with 67 enrolled participants 

revealed a statistically significant reduction of overall circumference measurements of the waist, 

hip, and thighs in two weeks.   

 

Laser therapy operates under the principle of photochemistry, activating and/or suppressing 

natural biochemical processes.  Because LLLT does not induce cellular apoptosis, there is no up-
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regulation of pro-inflammatory cytokines nor is there a large burden placed on the lymphatic 

system.  The fatty material secreted from the adipocytes following laser irradiation are absorbed 

by the lymphatic system, broken down by the liver, and naturally secreted.  Fatty acids released 

are bound to albumin, and are transported through the circulatory system to the liver to undergo 

fatty acid oxidation.  The triglycerides released are bound as lipoproteins and transported to the 

liver to be processed.  Moreover, a lipase known as lipoprotein lipase, has been demonstrated to 

breakdown emulsified triglycerides; therefore breaking the molecule down into three fatty acids 

and one glycerol molecule.   

 

The most important aspect of laser therapy is that cellular apoptosis is not induced.  The fatty 

material being evacuated from the cell must be absorbed by the lymphatic system, and because 

laser therapy does not destroy the cell, the complex organelles and the entire cell structure will 

not be absorbed by the lymphatic system.  It is not well understood how much the lymphatic 

system can absorb; therefore, creating a mass amount of cellular debris by destroying adipose 

tissue may result in serious long term effects.  Moreover, adipose tissue is not just composed of 

fat storing cells; there is also a collection of immune cells, fibroblasts, vessels, and stromal stem 

cells.  By creating the transitory pore in the fat storing cell only, we are preserving the viability 

of the surrounding, non-fat storing cells.   
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